Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Joseph, A. Beck Jeffrey, M. Brown Charles, J. Cross Joseph, C. Slater |
Copyright Year | 2013 |
Abstract | New geometric mistuning approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk-blade sector, particularly the disk-blade boundary, or connection. The developed Reduced Oder Models (ROMs) are formulated from a Craig-Bampton component mode synthesis (C-B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an eigen-analysis of the C-B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed. A tuned mode approximation has the added benefit of being only calculated once which offers significant computational savings for subsequent analyses. Two configurations of disk-blade connection mistuning are investigated: as-measured principal component deviations and random perturbations to the inter-blade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk-blade connection. Free and forced response results are obtained for each ROM and each disk-blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide highly accurate results with a significant reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk-blade connection becomes significant as the size of the geometric deviations at the connection become large. |
Sponsorship | International Gas Turbine Institute |
File Format | |
ISBN | 9780791855270 |
DOI | 10.1115/GT2013-94361 |
Volume Number | Volume 7B: Structures and Dynamics |
Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
Language | English |
Publisher Date | 2013-06-03 |
Publisher Place | San Antonio, Texas, USA |
Access Restriction | Subscribed |
Subject Keyword | Disks Finite element model Degrees of freedom Approximation Blades Rotors |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Libarray of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|