Thumbnail
Access Restriction
Authorized

Author Prasad, C. K. ♦ Resmi, K. R. ♦ Krishnan, L. K. ♦ Vaishnav, R.
Source Sree Chitra Tirunal Institute for Medical Sciences & Technology
Content type Text
Publisher Journal of Biomaterials Applications
File Format PDF
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health
Subject Domain (in MeSH) Immune System Phenomena ♦ Biological Sciences
Subject Keyword Biocompatibility
Abstract Coronary stents that are developed for use with balloon angioplasty are known to cause acute occlusion and long-term stenosis. It is likely that a controlled release of drugs at the site of stent implantation might inhibit the proliferation of vascular smooth muscle cells (VSMC) and reduce restenosis. However, if the drug is necrotic and affects cell survival near the implant, it may interrupt the local tissue regeneration. Different methods have been used for the immobilization of drugs with stents to get an effective concentration that inhibits cell proliferation. The objective of this study is to assess the effectiveness of Pachtaxel-loaded stents by immobilization with a biodegradable polymer, to inhibit cell proliferation. The cells used for the evaluation are human umbilical vein endothelial cells (HUVEC) and the proliferation rate of these cells on the drug-coated stent is compared against an uncoated stent for a 72-h period. Evaluations were also made to differentiate between cell apoptosis and necrosis to prove that the drug released is not deleterious to the surrounding tissue.While a similar initial cell adhesion is observed in bare and coated stents, the proliferation of HUVEC is negligible when grown on a drug-coated stent (p < 0.001). By specific staining techniques, the cells on the drug-coated stents are found to be apoptotic and not necrotic, throughout the evaluation period. In vitro leukocyte adhesion and platelet deposition on the drug-coated stents are found to be low when they are exposed to human blood and platelet-rich plasma (PRP), suggesting that the coated stents may not be thrombogenic in vivo. Therefore, drug coating of stents using the described technique may have a considerable promise for the prevention of neointimal proliferation, restenosis, and associated failure of angioplasty.
Education Level UG and PG
Learning Resource Type Article
Educational Framework Medical Council of India (MCI)
Journal JOURNAL OF BIOMATERIALS APPLICATIONS
Volume Number 19
Issue Number 4
Page Count 16
Starting Page 271
Ending Page 286