Thumbnail
Access Restriction
Authorized

Author Balakrishnan, B. ♦ Jayakrishnan, A.
Source Sree Chitra Tirunal Institute for Medical Sciences & Technology
Content type Text
Publisher Biomaterials
File Format PDF
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health ♦ Human physiology
Subject Domain (in MeSH) Tissues ♦ Cells ♦ Anatomy ♦ Biomedical and Dental Materials ♦ Chemicals and Drugs ♦ Investigative Techniques ♦ Equipment and Supplies ♦ Analytical, Diagnostic and Therapeutic Techniques and Equipment
Subject Keyword Tissue Engineering
Abstract The injectable polymer scaffolds which are biocompatible and biodegradable are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural proteins and polysaccharides are ideal scaffolds for tissue engineering since they resemble the extracellular matrices of the tissue comprised of various amino acids and sugar-based macromolecules. Here, we report a new class of hydrogels derived from oxidized alginate and gelatin. We show that periodate-oxidized sodium alginate having appropriate molecular weight and degree of oxidation rapidly cross-links proteins such as gelatin in the presence of small concentrations of sodium tetraborate (borax) to give injectable systems for tissue engineering, drug delivery and other medical applications. The rapid gelation in the presence of borax is attributed to the slightly alkaline pH of the medium as well as the ability of borax to complex with hydroxyl groups of polysaccharides. The effect of degree of oxidation and concentration of alginate dialdehyde, gelatin and borax on the speed of gelation was examined. As a general rule, the gelling time decreased with increase in concentration of oxidized alginate, gelatin and borax and increase in the degree of oxidation of alginate. Cross-linking parameters of the gel matrix were studied by swelling measurements and trinitrobenzene sulphonic acid (TNBS) assay. In general, the degree of cross-linking was found to increase with increase in the degree of oxidation of alginate, whereas the swelling ratio and the degree of swelling decreased. The gel was found to be biocompatible and biodegradable. The potential of the system as an injectable drug delivery vehicle and as a tissue-engineering scaffold is demonstrated by using primaquine as a model drug and by encapsulation of hepatocytes inside the gel matrix, respectively. (C) 2004 Elsevier Ltd. All rights reserved.
Education Level UG and PG
Learning Resource Type Article
Educational Framework Medical Council of India (MCI)
Journal BIOMATERIALS
Volume Number 26
Issue Number 18
Page Count 11
Starting Page 3941
Ending Page 3951