Thumbnail
Access Restriction
Authorized

Author Vasudev, S. C. ♦ Chandy, T. ♦ Umasankar, M. M. ♦ Sharma, C. P.
Source Sree Chitra Tirunal Institute for Medical Sciences & Technology
Content type Text
Publisher Journal of Biomaterials Applications
File Format PDF
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health
Subject Domain (in MeSH) Immune System Phenomena ♦ Biological Sciences
Subject Keyword Biocompatibility
Abstract Calcification has limited the durability of bioprosthetic heart valves fabricated from glutaraldehyde pretreated porcine aortic valves or bovine pericardium (BP). The present study describes calcium antagonistic effect of polyethylene glycol grafted bovine pericardium (PEG-GABP) with Fe2+/Mg2+ delivery from a co-matrix system in rat subcutaneous model. Retrieved samples were biochemically evaluated for calcification and alkaline phosphate (AP) activity. Scanning electron micrographs of 21-day explants had shown excessive calcification with glutaraldehyde treated BP (control). However, the PEG grafting and Fe/Mg release had substantially inhibited the deposition of calcium on BP The extractable alkaline phosphatase activity was also reduced with PEG grafting and metal ion release to BP The extractable AP had shown peak activity at 72 h [for GATBP-250.5 +/-1.2 nm pnp/mg protein/min enzyme activity (unit), PEG-GASP-165.2 +/- 16.6 units], but markedly reduced after 21 days (22.1 +/-1.8 and 12.0 +/-1.5 units, respectively). The initial high levels may be due to tissue injury via surgery, which mitigated with time. It is assumed that ferric ions may slow down or retard the calcification process by the inhibition of proper formation of hydroxy apatite while magnesium ions disrupt the growth of these crystals by replacing Ca2+. In addition it tray be hypothesized that these metal ions may inhibit the key element alkaline phosphatase, which acts as the substrate for mineralization. Hence, it is conceivable that a combination therapy via surface grafting of PEG and local delivery of low levels of ferric and magnesium ions may prevent the bioprosthesis associated calcification.
Education Level UG and PG
Learning Resource Type Article
Educational Framework Medical Council of India (MCI)
Journal JOURNAL OF BIOMATERIALS APPLICATIONS
Volume Number 16
Issue Number 2
Page Count 15
Starting Page 93
Ending Page 107