Access Restriction

Author Nair, M. B. ♦ Varma, H. K. ♦ John, Annie
Source Sree Chitra Tirunal Institute for Medical Sciences & Technology
Content type Text
Publisher Tissue Engineering Part A
File Format PDF
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health ♦ Human physiology
Subject Domain (in MeSH) Tissues ♦ Cells ♦ Fluids and Secretions ♦ Anatomy ♦ Biological Factors ♦ Biomedical and Dental Materials ♦ Chemicals and Drugs ♦ Investigative Techniques ♦ Equipment and Supplies ♦ Analytical, Diagnostic and Therapeutic Techniques and Equipment ♦ Technology, Industry, and Agriculture ♦ Technology and Food and Beverages
Subject Keyword Tissue Engineering
Abstract New biotechnologies such as tissue engineering require functionally active cells within supportive matrices where the physical and chemical stimulus provided by the matrix is indispensable to determine the cellular behavior. This study has investigated the influence of platelet-rich plasma (PRP) and fibrin glue (FG) on the functional activity of goat bone marrow-derived mesenchymal stem cells (gBMSCs) that differentiated into the osteogenic lineage. To achieve this goal, PRP and FG were separately coated on bioactive ceramics like hydroxyapatite (HA) and silica-coated HA (HASi), on which gBMSCs were seeded and induced to differentiate into the osteogenic lineage for 28 days. The cells were then analyzed for viability (lactate dehydrogenase assay: acridine orange and ethidium bromide staining), morphology (scanning electron microscopy), proliferation (picogreen assay), cell cycle assay (propidium iodide staining), and differentiation (alkaline phosphatase [ALP] activity and real-time PCR analysis of ALP, osteocalcin, and osteopontin gene). It has been observed that PRP and FG have appreciably favored the viability, spreading, and proliferation of osteogenic-induced gBMSCs. The osteopontin and osteocalcin expression was significantly enhanced on PRP- and FG-coated HA and HASi, but PRP had effect on neither ALP expression nor ALP activity. The results of this study have depicted that FG-coated ceramics were better than PRP- coated and bare matrices. Among all, the excellent performance was shown by FG coated HASi, which may be attributed to the communal action of the stimulus emanated by Si in HASi and the temporary extracellular matrix provided by FG over HASi. Thus, we can conclude that PRP or FG in combination with bioactive ceramics could possibly enhance the functional activity of cells to a greater extent, promoting the hybrid composite as a promising candidate for bone tissue engineering applications.
Education Level UG and PG
Learning Resource Type Article
Educational Framework Medical Council of India (MCI)
Volume Number 15
Issue Number 7
Page Count 13
Starting Page 1619
Ending Page 1631