Thumbnail
Access Restriction
Authorized

Author Pankajakshan, Divya ♦ Philipose, Lizymol P. ♦ Palakkal, Minshiya ♦ Kalliyana, Krishnan V. ♦ Krishnan, L. K.
Source Sree Chitra Tirunal Institute for Medical Sciences & Technology
Content type Text
Publisher Journal of Biomedical Materials Research Part B-applied Biomaterials
File Format PDF
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health ♦ Human physiology
Subject Domain (in MeSH) Tissues ♦ Cells ♦ Anatomy ♦ Biomedical and Dental Materials ♦ Chemicals and Drugs ♦ Investigative Techniques ♦ Equipment and Supplies ♦ Analytical, Diagnostic and Therapeutic Techniques and Equipment
Subject Keyword Tissue Engineering
Abstract Poor cell adhesion, cytotoxicity of degradation products and lack of biological signals for cell growth, survival, and tissue generation are the limitations in the use of a biodegradable polymer scaffold for vascular tissue engineering. We have fabricated a hybrid scaffold by integrating physicochemical characteristics of poly(epsilon-caprolactone) (PCL) and biomimetic property of a composite of fibrin, fibronectin, gelatin, growth factors, and proteoglycans to improve EC growth on the scaffold. Solvent cast porous films of poly(epsilon-caprolactone) was prepared using PEG as a porogen. Porosity varied between 5 and 200 mu m, and FTIR spectroscopy confirmed structural aspects of PCL. Films kept in PBS for 60 days showed tensile strength and elongation matching native blood vessel. Slow degradation of the scaffold was demonstrated by gravimetric analysis and molecular weight determination. Human umbilical vein endothelial cell (HUVEC) adhesion and proliferation on bare films were minimal. FTIR spectroscopy and environmental scanning electron microscopy (ESEM) of PCL-fibrin hybrid scaffold confirmed the presence of fibrin composite on PCL film. HUVEC was subsequently cultured on hybrid scaffold, and continuous EC lining was observed in 15 and 30 days of culture using ESEM. Results suggest that the new hybrid scaffold can be a suitable candidate for cardiovascular tissue engineering. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 87B: 570-579, 2008
Education Level UG and PG
Learning Resource Type Article
Educational Framework Medical Council of India (MCI)
Journal JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS
Issue Number 2
Page Count 10
Starting Page 570
Ending Page 579