Access Restriction

Author Morris, Viola B. ♦ Sharma, C. P.
Source Sree Chitra Tirunal Institute for Medical Sciences & Technology
Content type Text
Publisher Journal of Colloid and Interface Science
File Format PDF
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health
Subject Domain (in MeSH) Biomedical and Dental Materials ♦ Chemicals and Drugs
Subject Keyword Biomaterials
Abstract Delivery vectors having targeting ligands provide an impending impact on cancer gene therapy. Our work focuses on folate mediated targeting induced by conjugating poly(ethylene glycol)-folate (PEG-FA) with arginine modified chitosan polymer having low molecular weight of 15 kDa and high degree of quaternization (ATFP15H). The ATFP15H derivative on condensation with plasmid DNA formed nanoparticles with core shell nanostructure. It also affirmed good buffering capacity. The derivative was found to protect DNA from DNase I degradation and also from disassembly in presence of negatively charged plasma proteins. It exhibited blood compatibility in terms of percentage hemolysis, erythrocyte aggregation and also by platelet activation. At a concentration of 10 mu g, the capability of the derivative to enhance cell growth at normal cell growing conditions was observed. The transfection efficiency was also found to be comparable to PEI when transfected in KB cell line, which over expressed the folate receptor (FR) in presence of 10% fetal bovine serum (FBS). On comparison with native chitosan and trimethylated chitosan, ATFP15H derivative exhibited high cellular uptake and nuclear localization due to the superior colloidal stability attained on conjugation with polyethylene glycol. This has been ascertained by flow cytometry and YOYO labeling of plasmid DNA. (C) 2010 Elsevier Inc. All rights reserved.
Education Level UG and PG
Learning Resource Type Article
Educational Framework Medical Council of India (MCI)
Volume Number 348
Issue Number 2
Page Count 9
Starting Page 360
Ending Page 368