Thumbnail
Access Restriction
Open

Author Yao, Jinlei ♦ Yan, Xu ♦ Morozkin, A. V.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ♦ CALCIUM COMPOUNDS ♦ COERCIVE FORCE ♦ COPPER COMPOUNDS ♦ CURIE POINT ♦ ENTROPY ♦ MAGNETIC PROPERTIES ♦ MANGANESE COMPOUNDS ♦ RARE EARTH COMPOUNDS ♦ RARE EARTHS ♦ SOLID SOLUTIONS ♦ SOLIDS ♦ TRANSITION ELEMENTS
Abstract The effects of transition metal substitution for Ni on the magnetic properties of the CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetocaloric effects of SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) were calculated in terms of isothermal magnetic entropy change (ΔS{sub m}). The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Graphical abstract: CaCu{sub 5}-type SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Highlights: • CaCu{sub 5}-type SmNi{sub 3}{Mn, Fe, Co, Cu}Si exhibit the Curie points at 12–190 K. • SmNi{sub 3}{Mn, Fe, Co, Cu}Si show field induced transition at 6–110 K. • SmNi{sub 3}MnSi shows huge magnetic hysteresis with coercive field of 80 kOe at 20 K. • SmNi{sub 3}FeSi shows huge magnetic hysteresis with coercive field of 87 kOe at 40 K. • SmNi{sub 3}CuSi shows giant coercive field of 54 kOe at 5 K.
ISSN 00224596
Educational Use Research
Learning Resource Type Article
Publisher Date 2015-12-15
Publisher Place United States
Journal Journal of Solid State Chemistry
Volume Number 232


Open content in new tab

   Open content in new tab