Thumbnail
Access Restriction
Open

Author Jiang, W. ♦ Weber, W. J.
Sponsorship (US)
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Publisher The American Physical Society
Language English
Subject Keyword CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ♦ ANNEALING ♦ BACKSCATTERING ♦ CHANNELING ♦ GEOMETRY ♦ MONOCRYSTALS ♦ NUCLEAR REACTION ANALYSIS
Abstract Single crystal 6H-SiC has been irradiated 60{sup o} off normal with 2 MeV Au{sup 2+} ions at 300 K to fluences of 0.029, 0.058, and 0.12 ions/nm2, which produced relatively low damage levels. The disorder profiles as a function of ion fluence on both the Si and C sublattices have been determined simultaneously in situ using Rutherford backscattering and nuclear reaction analysis with 0.94 MeV D{sup +} ions in channeling geometry along the <0001>, <1{bar 1}02>, and <10{bar 1}1> axes. Along the <0001> axis at these low doses, similar levels of Si and C disorder are observed, and the damage accumulation is linear with dose. However, along <1{bar 1}02> and <10{bar 1}1>, the disorder accumulation is larger and increases sublinearly with dose. Furthermore, a higher level of C disorder than Si disorder is observed along the <1{bar 1}02> and <10{bar 1}1> axes, which is consistent with a smaller threshold displacement energy on the C sublattice in SiC. The mean lattice displacement, perpendicular to each corresponding axis, ranges from 0.014 to 0.037 nm for this range of ion fluences. A steady accumulation of small displacements due to lattice stress is observed along the <10{bar 1}1> axis, and a detectable reduction of the lattice stress perpendicular to the <0001> axis occurs at 0.12 Au{sup 2+}/nm{sup 2}. There is only a moderate recovery of disorder, produced at and below 0.058 Au{sup 2+}/nm{sup 2}, during thermal annealing at 570 K; more significant recovery is observed for 0.12 Au{sup 2+}/nm{sup 2} along both the <0001> and <1{bar 1}02> axes.
ISSN 01631829
Educational Use Research
Learning Resource Type Article
Publisher Date 2001-09-15
Publisher Place United States
Journal Physical Review B
Volume Number 64
Issue Number 12


Open content in new tab

   Open content in new tab