Thumbnail
Access Restriction
Open

Author Bretz, N. L. ♦ Adler, H. ♦ Alling, P. ♦ Ancher, C. ♦ Anderson, H. ♦ Anderson, J. W. ♦ Arunasalam, V. ♦ Ascione, G. ♦ Barnes, C. W. ♦ Barnes, G. ♦ Batha, S. ♦ Bateman, G. ♦ Beer, M. ♦ Bell, M. G. ♦ Bell, R. ♦ Bitter, M. ♦ Blanchard, W. ♦ Brunkhorst, C. ♦ Budny, R. ♦ Bush, C. E. ♦ Camp, R. ♦ Caorlin, M. ♦ Carnevale, H. ♦ Cauffman, S. ♦ Chang, Z. ♦ Cheng, C. ♦ Chrzanowski, J. ♦ Collins, J. ♦ Coward, G. ♦ Cropper, M. ♦ Darrow, D. S. ♦ Daugert, R. ♦ DeLooper, J. ♦ Dorland, W. ♦ Dudek, L. ♦ Duong, H. ♦ Durst, R. ♦ Efthimion, P. C. ♦ Ernst, D. ♦ Evensen, H. ♦ Fisch, N. ♦ Fisher, R. ♦ Fonck, R. J. ♦ Fredd, E. ♦ Fredrickson, E. ♦ Fromm, R. ♦ Fu, G. ♦ Fujita, T. ♦ Furth, H. P. ♦ Garzotto, V. ♦ Gentile, C. ♦ Gilbert, J. ♦ Giola, J. ♦ Gorelenkov, N. ♦ Grek, B. ♦ Grisham, L. R. ♦ Hammett, G. ♦ Hanson, G. R. ♦ Hawryluk, R. J. ♦ Heidbrink, W. ♦ Herrmann, H. W. ♦ Hill, K. W. ♦ Hosea, J. ♦ Hsuan, H. ♦ Hughes, M. ♦ Hulse, R. ♦ Janos, A. ♦ Jassby, D. L. ♦ Jobes, F. C. ♦ Johnson, D. W. ♦ Johnson, L. C. ♦ Kalish, M. ♦ Kamperschroer, J. ♦ Kesner, J. ♦ Kugel, H. ♦ Labik, G. ♦ Lam, N. T. ♦ LaMarche, P. H. ♦ Lawson, E. ♦ LeBlanc, B. ♦ Levine, J. ♦ Levinton, F. M. ♦ Loesser, D. ♦ Long, D. ♦ Loughlin, M. J. ♦ Machuzak, J. ♦ Majeski, R. ♦ Mansfield, D. K. ♦ Marmar, E. ♦ Marsala, R. ♦ Martin, A. ♦ Martin, G. ♦ Mauel, M. ♦ Mazzucato, E. ♦ McCarthy, M. P. ♦ McChesney, J. ♦ McCormack, B. ♦ McCune, D. C. ♦ McGuire, K. M. ♦ McKee, G. ♦ Meade, D. M. ♦ Medley, S. S. ♦ Mikkelsen, D. R. ♦ Mirnov, S. V. ♦ Mueller, D. ♦ Murakami, M. ♦ Murphy, J. A. ♦ Nagy, A. ♦ Navratil, G. A. ♦ Nazikian, R. ♦ Newman, R. ♦ Norris, M. ♦ OConnor, T. ♦ Oldaker, M. ♦ Ongena, J. ♦ Osakabe, M. ♦ Owens, D. K. ♦ Park, H. ♦ Park, W. ♦ Parks, P. ♦ Paul, S. F. ♦ Pearson, G. ♦ Perry, E. ♦ Persing, R. ♦ Petrov, M. ♦ Phillips, C. K. ♦ Phillips, M. ♦ Pitcher, S. ♦ Pysher, R. ♦ Qualls, A. L. ♦ Raftapoulos, S. ♦ Ramakrishnan, S. ♦ Ramsey, A. ♦ Rasmunsen, D. A. ♦ Redi, M. H. ♦ Renda, G. ♦ Rewoldt, G. ♦ Roberts, D. ♦ Rogers, J. ♦ Rossmassler, R. ♦ Roquemore, A. L. ♦ Ruskov, E. ♦ Sabbaugh, S. A. ♦ Sasao, M. ♦ Schilling, G. ♦ Schivell, J. ♦ Schmidt, G. L. ♦ Scillia, R. ♦ Scott, S. D. ♦ Semenov, I. ♦ Senko, T.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword PLASMA PHYSICS AND FUSION ♦ TFTR TOKAMAK ♦ FUSION YIELD ♦ DEUTERIUM TRITIDE ♦ PLASMA HEATING ♦ NEUTRON FLUX ♦ ALPHA PARTICLES ♦ ELECTRON TEMPERATURE ♦ ION TEMPERATURE ♦ KEV RANGE 10-100 ♦ ELECTRON DENSITY ♦ ICR HEATING
Abstract A peak fusion power production of 9.3{plus_minus}0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: {ital T}{sub {ital e}}(0)=11.5 keV, {ital T}{sub {ital i}}(0)=44 keV, {ital n}{sub {ital e}}(0)=8.5{times}10{sup 19} m{sup {minus}3}, and {l_angle}{ital Z}{sub eff}{r_angle}=2.2 giving {tau}{sub {ital E}}=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m{sup 3} similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2{Omega}{sub {ital T}} gave up to 80% of the ICRF energy to ions. {copyright} {ital 1995 American Institute of Physics.}
ISSN 0094243X
Educational Use Research
Learning Resource Type Article
Publisher Date 1995-09-01
Publisher Department Princeton Plasma Physics Laboratory
Publisher Place United States
Volume Number 345
Issue Number 1
Technical Publication No. CONF-9410130-
Organization Princeton Plasma Physics Laboratory


Open content in new tab

   Open content in new tab