Thumbnail
Access Restriction
Subscribed

Author Naruse, Makoto ♦ Peper, Ferdinand ♦ Akahane, Kouichi ♦ Yamamoto, Naokatsu ♦ Kawazoe, Tadashi ♦ Tate, Naoya ♦ Ohtsu, Motoichi
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2012
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Nanophotonics
Abstract We examine the timing dependence of nanophotonic devices based on optical excitation transfer via optical near-field interactions at the nanometer scale. We theoretically analyze the dynamic behavior of a two-input nanophotonic switch composed of three quantum dots based on a density matrix formalism while assuming arrival-time differences, or skew, between the inputs. The analysis reveals that the nanophotonic switch is resistant to a skew longer than the input signal duration, and the tolerance to skew is asymmetric with respect to the two inputs. The skew dependence is also experimentally examined based on near-field spectroscopy of InGaAs quantum dots, showing good agreement with the theory. Elucidating the dynamic properties of nanophotonics, together with the associated spatial and energy dissipation attributes at the nanometer scale, will provide critical insights for novel system architectures.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2012-02-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 8
Issue Number 1
Page Count 12
Starting Page 1
Ending Page 12


Open content in new tab

   Open content in new tab
Source: ACM Digital Library