Thumbnail
Access Restriction
Open

Author Shiota, D. ♦ Zank, G. P. ♦ Adhikari, L. ♦ Hunana, P. ♦ Telloni, D. ♦ Bruno, R.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ♦ ACCELERATION ♦ COMPARATIVE EVALUATIONS ♦ COMPUTERIZED SIMULATION ♦ CONFIGURATION ♦ CORRELATIONS ♦ DIPOLES ♦ DISTRIBUTION ♦ HELIOSPHERE ♦ INTERACTIONS ♦ INTERPLANETARY MAGNETIC FIELDS ♦ MAGNETOHYDRODYNAMICS ♦ PLASMA ♦ SOLAR CORONA ♦ SOLAR WIND ♦ SPACE VEHICLES ♦ THREE-DIMENSIONAL CALCULATIONS ♦ TRANSPORT THEORY ♦ TURBULENCE
Abstract Turbulence in the solar wind can play essential roles in the heating of coronal and solar wind plasma and the acceleration of the solar wind and energetic particles. Turbulence sources are not well understood and thought to be partly enhanced by interaction with the large-scale inhomogeneity of the solar wind and the interplanetary magnetic field and/or transported from the solar corona. To investigate the interaction with background inhomogeneity and the turbulence sources, we have developed a new 3D MHD model that includes the transport and dissipation of turbulence using the theoretical model of Zank et al. We solve for the temporal and spatial evolution of three moments or variables, the energy in the forward and backward fluctuating modes and the residual energy and their three corresponding correlation lengths. The transport model is coupled to our 3D model of the inhomogeneous solar wind. We present results of the coupled solar wind-turbulence model assuming a simple tilted dipole magnetic configuration that mimics solar minimum conditions, together with several comparative intermediate cases. By considering eight possible solar wind and turbulence source configurations, we show that the large-scale solar wind and IMF inhomogeneity and the strength of the turbulence sources significantly affect the distribution of turbulence in the heliosphere within 6 au. We compare the predicted turbulence distribution results from a complete solar minimum model with in situ measurements made by the Helios and Ulysses spacecraft, finding that the synthetic profiles of the turbulence intensities show reasonable agreement with observations.
ISSN 0004637X
Educational Use Research
Learning Resource Type Article
Publisher Date 2017-03-01
Publisher Place United States
Journal Astrophysical Journal
Volume Number 837
Issue Number 1


Open content in new tab

   Open content in new tab