Thumbnail
Access Restriction
Subscribed

Author Hass, Joel ♦ Lagarias, Jeffrey C. ♦ Pippenger, Nicholas
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©1999
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Computational complexity ♦ Knot theory ♦ Three-dimensional topology
Abstract We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, ie., capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, UNKNOTTING PROBLEM is in NP. We also consider the problem, SPLITTING PROBLEM of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in PSPACE. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1999-03-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 46
Issue Number 2
Page Count 27
Starting Page 185
Ending Page 211


Open content in new tab

   Open content in new tab
Source: ACM Digital Library