Thumbnail
Access Restriction
Subscribed

Author Balti, H. ♦ Hachani, F. ♦ Gasmi, M.
Source SpringerLink
Content type Text
Publisher Springer Berlin Heidelberg
File Format PDF
Copyright Year ©2013
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Earth sciences
Subject Keyword Well logging ♦ Vertical electrical sounding ♦ Hydrogeology ♦ Teboursouk Basin ♦ NW Tunisia ♦ Earth Sciences
Abstract The water table of Teboursouk basin (NW Tunisia), logged in the Eocene limestone, is a relevant hydrological target considering its relatively important volume and good chemical quality. The assessment of its geohydrological potential requires the compilation of geological, stratigraphic, geophysical studies and drilling data. Well logging aims characterization of the petrophysical parameters of aquifer formations as well as possible correlations between boreholes. The interpretations show high variabilities in porosity (from 4 to 42 % related to fracturing) of limestone formation and in salinity (0.7 to 2.3 g/l) of the water table; the latter increase to the Southeast of the basin, which is contaminated by the salt formation. Over 54 Schlumberger electrical soundings (AB = 400 m) were performed. The interpretation of resistivity distributions at various depths is based on apparent resistivity maps corresponding to different AB spacings. Measured resistivity values were one-dimensionally interpreted. Drilled boreholes and the position of some electrical soundings on geological outcrops have been helpful for electrical data calibration. The generalization of the calibration for all electrical soundings show that the limestones are characterized by high and very contrast resistivity (ρ >22 Ωm), a depth ranging from 0 to 100 m and a thickness of about 70 m, exceeding 200 m per place. These variations are due to the presence of faults which are affecting the basin, and are connected to Eocene lands behind. The compilation of data led to evaluate approximately the groundwater reserves of Teboursouk basin to 130 million of cubic meter.
ISSN 18667511
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-06-22
Publisher Place Berlin, Heidelberg
e-ISSN 18667538
Journal Arabian Journal of Geosciences
Volume Number 7
Issue Number 7
Page Count 10
Starting Page 2905
Ending Page 2914


Open content in new tab

   Open content in new tab
Source: SpringerLink