Thumbnail
Access Restriction
Subscribed

Author Lin, Ing-Chao ♦ Syu, Shun-Ming ♦ Ho, Tsung-Yi
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Gate sizing ♦ NBTI ♦ Vth assignment
Abstract Leakage power is a major design constraint in deep submicron technology and below. Meanwhile, transistor degradation due to Negative Bias Temperature Instability (NBTI) has emerged as one of the main reliability concerns in nanoscale technology. Gate sizing is a widely used technique to reduce circuit leakage, and this approach has recently attracted much attention with regard to improving circuits to tolerate NBTI. However, these studies only consider timing and area constraints, and many other important issues, such as slew and max-load, are missing. In this article, we present an efficient gate sizing framework that can reduce leakage and improve circuit reliability under timing constraints. Our algorithms consider slack, slew and max-load constraints. The benchmarks are those from ISPD 2012, which feature industrial design properties, including discrete cell sizes, nonconvex cell timing models, slew dependencies and constraints, as well as large design sizes. The experimental results obtained from ISPD 2012 benchmark circuits demonstrate that our approach can meet all the constraints and tolerated NBTI degradation with a power savings of 6.54% as compared with the traditional method.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-10-06
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 11
Issue Number 1
Page Count 12
Starting Page 1
Ending Page 12


Open content in new tab

   Open content in new tab
Source: ACM Digital Library