Access Restriction

Author Qiu, Xiaogang ♦ Dubois, Michel
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract In modern processors, the dynamic translation of virtual addresses to support virtual memory is done before or in parallel with the first-level cache access. As processor technology improves at a rapid pace and the working sets of new applications grow insatiably the latency and bandwidth demands on the TLB (Translation Lookaside Buffer) are getting more and more difficult to meet. The situation is worse in multiprocessor systems, which run larger applications and are plagued by the TLB consistency problem.We evaluate and compare five options for virtual address translation in the context of COMAs (Cache Only Memory Architectures). The dynamic address translation mechanism can be located after the cache access provided the cache is virtual. In a particular design, which we call V-COMA for Virtual COMA, the physical address concept and the traditional TLB are eliminated. While still supporting virtual memory, V-COMA reduces the address translation overhead to a minimum.V-COMA scales well and works better in systems with large number of processors. As a machine running on virtual addresses, V-COMA provides a simple and consistent hardware model to the operating system and the compiler, in which further optimization opportunities are possible.
Description Affiliation: Department of Electrical Engineering - Systems, University of Southern California, Los Angeles, CA (Qiu, Xiaogang; Dubois, Michel)
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1981-04-01
Publisher Place New York
Journal ACM SIGARCH Computer Architecture News (CARN)
Volume Number 26
Issue Number 3
Page Count 12
Starting Page 214
Ending Page 225

Open content in new tab

   Open content in new tab
Source: ACM Digital Library