Thumbnail
Access Restriction
Subscribed

Author Moritz, Csaba Andras ♦ Ashok, Raksit ♦ Chheda, Saurabh
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract This paper presents Cool-Mem, a family of memory system architectures that integrate conventional memory system mechanisms, energy-aware address translation, and compiler-enabled cache disambiguation techniques, to reduce energy consumption in general purpose architectures. It combines statically speculative cache access modes, a dynamic CAM based Tag-Cache used as backup for statically mispredicted accesses, various conventional multi-level associative cache organizations, embedded protection checking along all cache access mechanisms, as well as architectural organizations to reduce the power consumed by address translation in virtual memory. Because it is based on speculative static information, the approach removes the burden of provable correctness in compiler analysis passes that extract static information. This makes Cool-Mem applicable for large and complex applications, without having any limitations due to complexity issues in the compiler passes or the presence of precompiled static libraries. Based on extensive evaluation, for both SPEC2000 and Mediabench applications, 12% to 20% total energy savings are obtained in the processor, with performance ranging from 1.2% degradation to 8% improvement, for the applications studied.
Description Affiliation: University of Massachusetts, Amherst, MA (Ashok, Raksit; Chheda, Saurabh; Moritz, Csaba Andras)
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1981-04-01
Publisher Place New York
Journal ACM SIGARCH Computer Architecture News (CARN)
Volume Number 30
Issue Number 5
Page Count 11
Starting Page 133
Ending Page 143


Open content in new tab

   Open content in new tab
Source: ACM Digital Library