Thumbnail
Access Restriction
Subscribed

Author Kaltofen, Erich
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©1988
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract Algorithms on multivariate polynomials represented by straight-line programs are developed. First, it is shown that most algebraic algorithms can be probabilistically applied to data that are given by a straight-line computation. Testing such rational numeric data for zero, for instance, is facilitated by random evaluations modulo random prime numbers. Then, auxiliary algorithms that determine the coefficients of a multivariate polynomial in a single variable are constructed. The first main result is an algorithm that produces the greatest common divisor of the input polynomials, all in straight-line representation. The second result shows how to find a straight-line program for the reduced numerator and denominator from one for the corresponding rational function. Both the algorithm for that construction and the greatest common divisor algorithm are in random polynomial time for the usual coefficient fields and output a straight-line program, which with controllably high probability correctly determines the requested answer. The running times are polynomial functions in the binary input size, the input degrees as unary numbers, and the logarithm of the inverse of the failure probability. The algorithm for straight-line programs for the numerators and denominators of rational functions implies that every degree-bounded rational function can be computed fast in parallel, that is, in polynomial size and polylogarithmic depth.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1988-01-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 35
Issue Number 1
Page Count 34
Starting Page 231
Ending Page 264


Open content in new tab

   Open content in new tab
Source: ACM Digital Library