Thumbnail
Access Restriction
Subscribed

Author Weber, Kristin ♦ Otto, Boris ♦ sterle, Hubert
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2009
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Data governance ♦ IT governance ♦ Contingency theory ♦ Data governance model ♦ Data quality management
Abstract Enterprizes need Data Quality Management (DQM) to respond to strategic and operational challenges demanding high-quality corporate data. Hitherto, companies have mostly assigned accountabilities for DQM to Information Technology (IT) departments. They have thereby neglected the organizational issues critical to successful DQM. With data governance, however, companies may implement corporate-wide accountabilities for DQM that encompass professionals from business $\textit{and}$ IT departments. This research aims at starting a scientific discussion on data governance by transferring concepts from IT governance and organizational theory to the previously largely ignored field of data governance. The article presents the first results of a community action research project on data governance comprising six international companies from various industries. It outlines a data governance model that consists of three components (data quality roles, decision areas, and responsibilities), which together form a responsibility assignment matrix. The data governance model documents data quality roles and their type of interaction with DQM activities. In addition, the article describes a data governance contingency model and demonstrates the influence of performance strategy, diversification breadth, organization structure, competitive strategy, degree of process harmonization, degree of market regulation, and decision-making style on data governance. Based on these findings, companies can structure their specific data governance model.
ISSN 19361955
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-06-01
Publisher Place New York
e-ISSN 19361963
Journal Journal of Data and Information Quality (JDIQ)
Volume Number 1
Issue Number 1
Page Count 27
Starting Page 1
Ending Page 27


Open content in new tab

   Open content in new tab
Source: ACM Digital Library