Thumbnail
Access Restriction
Open

Author Beals, D. M. ♦ Crandall, B. S. ♦ Fledderman, P. D.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword NUCLEAR FUELS ♦ RADIOACTIVE EFFLUENTS ♦ MONITORING ♦ SAVANNAH RIVER PLANT ♦ PORTABLE EQUIPMENT ♦ WATER POLLUTION MONITORS ♦ SAMPLERS ♦ TECHNETIUM 99 ♦ STRONTIUM 90 ♦ CESIUM 137 ♦ COBALT 58 ♦ COBALT 60 ♦ SAMPLE PREPARATION
Abstract In the United States, all nuclear facilities must provide for environmental monitoring of effluent points for radionuclides that have the potential for release to the environment. For the US Department of Energy (DOE) this means thousands of surface water analyses are performed each year at a cost of millions of dollars per year. Analytical costs for radiochemical analyses are often high due to the lengthy chemical separations required prior to counting for the selected analyte. At the Savannah River Site, a DOE facility located in South Carolina, a new technique has been demonstrated whereby samples are collected and processed in the field, at the time of collection, for selected radionuclides. The technique makes use of ion selective solid-phase extraction (SPE) disks being placed in a portable automatic aqueous sampler. Water from a surface stream or effluent sampling point is collected via an ISCO, Inc., 3710 SPX portable sampler. Weekly or biweekly (depending on the sampling requirements), the SPE disks are collected and returned to the laboratory for activity determination. The analytes that are currently being monitored by the new method are {sup 99}Tc, {sup 80}Sr, {sup 137}Cs, {sup 58}Co, and {sup 60}Co. The RAD SPE disks have been shown to be effective for the extraction of technetium, strontium, and cesium and cobalt from aqueous systems. The {sup 99}Tc and {sup 90}Sr activities are determined by direct counting of the SPE disk by gas flow beta proportional techniques; the {sup 137}Cs and radiocobalt activities are determined by direct counting of the SPE disk by gamma spectrometry. Because of the specificity of the SPE disks, there is no additional chemical separation required prior to counting the SPE disks for the selected activity determination.
ISSN 0003018X
Educational Use Research
Learning Resource Type Article
Publisher Date 1998-12-31
Publisher Place United States
Journal Transactions of the American Nuclear Society
Volume Number 79
Technical Publication No. CONF-981106-


Open content in new tab

   Open content in new tab