Thumbnail
Access Restriction
Open

Author Nordlund, Kai ♦ Descoeudres, Antoine ♦ Djurabekova, Flyura
Source CERN Document Server
Content type Text
File Format PDF
Date Created 2011-06-01
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Physics ♦ Modern physics ♦ Technology ♦ Engineering & allied operations ♦ Applied physics
Subject Keyword Accelerators and Storage Rings
Abstract RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. The conditioning speed, breakdown field and field enhancement factor of cobalt have been measured. The average breakdown field after conditioning reaches 615 MV/m, which places cobalt amongst the best materials tested so far. By comparison with results and properties of other metals, the high breakdown field of Co could be due to its high work function and maybe also to its hexagonal crystal structure. Geneva, Switzerland (June 2009) CLIC – Note – 875
Learning Resource Type Article
Publisher Date 2009-01-01
Rights License Preprint: © 2011-2018 CERN (License: CC-BY-3.0)
Page Count 6