Thumbnail
Access Restriction
Subscribed

Author Navarro, Gonzalo ♦ Mkinen, Veli
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2007
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Text indexing ♦ Entropy ♦ Text compression
Abstract Full-text indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into $\textit{self-indexes},$ which in addition contain enough information to reproduce any text portion, so they $\textit{replace}$ the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, which radically changed the status of this area in less than 5 years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously. In this article we present the main concepts underlying (compressed) self-indexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant self-indexes, focusing on how they exploit text compressibility to achieve compact structures that can efficiently solve various search problems. Our aim is to give the background to understand and follow the developments in this area.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2007-04-12
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 39
Issue Number 1


Open content in new tab

   Open content in new tab
Source: ACM Digital Library