Thumbnail
Access Restriction
Subscribed

Author Sheikh, Basit Riaz ♦ Manohar, Rajit
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2011
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Asynchronous logic circuits ♦ Pipeline processing ♦ Very-large-scale integration
Abstract We present two novel energy-efficient pipeline templates for high throughput asynchronous circuits. The proposed templates, called N-P and N-Inverter pipelines, use a single-track handshake protocol. There are multiple stages of logic within each pipeline. The proposed techniques minimize handshake overheads associated with input tokens and intermediate logic nodes within a pipeline template. Each template can pack a significant amount of logic in a single stage, while still maintaining a fast cycle time of only 18 transitions. Noise and timing robustness constraints of our pipelined circuits are quantified across all process corners. We present completion detection scheme based on wide NOR gates, which results in significant latency and energy savings especially as the number of outputs increase. To fully quantify all design trade-offs, three separate pipeline implementations of an 8x8-bit Booth-encoded array multiplier are presented. Compared to a standard QDI pipeline implementation, the N-Inverter and N-P pipeline implementations reduced the energy-delay product by 38.5% and 44% respectively. The overall multiplier latency was reduced by 20.2% and 18.7%, while the total transistor width was reduced by 35.6% and 46% with N-Inverter and N-P pipeline templates respectively.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2011-12-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 7
Issue Number 4
Page Count 26
Starting Page 1
Ending Page 26


Open content in new tab

   Open content in new tab
Source: ACM Digital Library