Thumbnail
Access Restriction
Subscribed

Author Skillicorn, David B. ♦ Talia, Domenico
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©1998
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword General-purpose parallel computation ♦ Logic programming languages ♦ Object-oriented languages ♦ Parallel programming languages ♦ Parallel programming models ♦ Software development methods ♦ Taxonomy
Abstract We survey parallel programming models and languages using six criteria to assess their suitability for realistic portable parallel programming. We argue that an ideal model should by easy to program, should have a software development methodology, should be architecture-independent, should be easy to understand, should guarantee performance, and should provide accurate information about the cost of programs. These criteria reflect our belief that developments in parallelism must be driven by a parallel software industry based on portability and efficiency. We consider programming models in six categories, depending on the level of abstraction they provide. Those that are very abstract conceal even the presence of parallelism at the software level. Such models make software easy to build and port, but efficient and predictable performance is usually hard to achieve. At the other end of the spectrum, low-level models make all of the messy issues of parallel programming explicit (how many threads, how to place them, how to express communication, and how to schedule communication), so that software is hard to build and not very portable, but is usually efficient. Most recent models are near the center of this spectrum, exploring the best tradeoffs between expressiveness and performance. A few models have achieved both abstractness and efficiency. Both kinds of models raise the possibility of parallelism as part of the mainstream of computing.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1998-06-01
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 30
Issue Number 2
Page Count 47
Starting Page 123
Ending Page 169


Open content in new tab

   Open content in new tab
Source: ACM Digital Library