Access Restriction

Author Zamani, Masoud ♦ Mirzaei, Hanieh ♦ Tahoori, Mehdi B.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2013
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Variation tolerant ♦ Crossbar nano-architecture ♦ Defect ♦ Defect tolerant ♦ Mapping variation ♦ Nano-electronics
Abstract Several emerging nano-technologies, including crossbar nano-architectures, have recently been studied as possible replacement or supplement to CMOS technology in the future. However, extreme process variation and high failure rates, mainly due to atomic device sizes, are major challenges for crossbar nano-architectures. This article presents variation- and defect-tolerant logic mapping on crossbar nano-architectures. Since variation/defect-aware mapping is an NP-hard problem, we introduce a set of Integer Linear Programming (ILP) formulations to effectively solve the problem in a reasonable time. The proposed ILP formulations can be used for both diode-based and FET-based crossbars. Experimental results on benchmark circuits show that our approach can reduce the critical-path delay 39% compared to the Simulated Annealing (SA) method. It can also successfully achieve 97% defect-free mapping with 40% defect density. It can tolerate process variations to meet timing constraints in 95% of the cases, compared to only 77% achieved by SA.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-10-08
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 9
Issue Number 3
Page Count 21
Starting Page 1
Ending Page 21

Open content in new tab

   Open content in new tab
Source: ACM Digital Library