Thumbnail
Access Restriction
Subscribed

Author Aggarwal, J. K. ♦ Ryoo, M. S.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2011
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Computer vision ♦ Activity analysis ♦ Event detection ♦ Human activity recognition ♦ Video recognition
Abstract Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This article provides a detailed overview of various state-of-the-art research papers on human activity recognition. We discuss both the methodologies developed for simple human actions and those for high-level activities. An approach-based taxonomy is chosen that compares the advantages and limitations of each approach. Recognition methodologies for an analysis of the simple actions of a single person are first presented in the article. Space-time volume approaches and sequential approaches that represent and recognize activities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level activities are presented and compared. Statistical approaches, syntactic approaches, and description-based approaches for hierarchical recognition are discussed in the article. In addition, we further discuss the papers on the recognition of human-object interactions and group activities. Public datasets designed for the evaluation of the recognition methodologies are illustrated in our article as well, comparing the methodologies' performances. This review will provide the impetus for future research in more productive areas.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2011-04-01
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 43
Issue Number 3
Page Count 43
Starting Page 1
Ending Page 43


Open content in new tab

   Open content in new tab
Source: ACM Digital Library