Thumbnail
Access Restriction
Subscribed

Author Ben-Sasson, Eli ♦ Lovett, Shachar ♦ Ron-Zewi, Noga
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Communication complexity ♦ Additive combinatorics ♦ Approximate duality ♦ Log-rank conjecture ♦ Low-rank matrices ♦ Polynomial Freiman-Ruzsa conjecture
Abstract Identifying complexity measures that bound the communication complexity of a {0,1}-valued matrix $\textit{M}$ is one the most fundamental problems in communication complexity. Mehlhorn and Schmidt [1982] were the first to suggest matrix-rank as one such measure. Among other things, they showed log rank F(M) CC(M) rankF2(M), where $\textit{CC}(\textit{M})$ denotes the (deterministic) communication complexity of the function associated with $\textit{M},$ and the rank on the left-hand side is over any field $\textit{F}$ and on the right-hand side it is over the two-element field $\textit{F}2.$ For certain matrices $\textit{M},$ communication complexity equals the right-hand side, and this completely settles the question of “communication complexity vs. $\textit{F}2-rank”.$ Here we reopen this question by pointing out that, when $\textit{M}$ has an additional natural combinatorial property---high discrepancy with respect to distributions which are uniform over submatrices---then communication complexity can be sublinear in $\textit{F}2-rank.$ Assuming the Polynomial Freiman-Ruzsa (PFR) conjecture in additive combinatorics, we show that CC(M) O(rank F2(M)/log rank F2(M)) for any matrix $\textit{M}$ which satisfies this combinatorial property. We also observe that if $\textit{M}$ has low rank over the reals, then it has low rank over $\textit{F}2$ and it additionally satisfies this combinatorial property. As a corollary, our results also give the first (conditional) sublinear bound on communication complexity in terms of rank over the reals, a result improved later by Lovett [2014]. Our proof is based on the study of the “approximate duality conjecture” which was suggested by Ben-Sasson and Zewi [2011] and studied there in connection to the PFR conjecture. First, we improve the bounds on approximate duality assuming the PFR conjecture. Then, we use the approximate duality conjecture (with improved bounds) to get our upper bound on the communication complexity of low-rank matrices.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-07-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 61
Issue Number 4
Page Count 18
Starting Page 1
Ending Page 18


Open content in new tab

   Open content in new tab
Source: ACM Digital Library