Access Restriction

Author Miloudi, A. ♦ Radadi, E.A.A. ♦ Draou, A. ♦ Miloud, Y.
Sponsorship IEEE Power Electon. Soc
Source IEEE Xplore Digital Library
Content type Text
Publisher Institute of Electrical and Electronics Engineers, Inc. (IEEE)
File Format PDF
Copyright Year ©2004
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Physics ♦ Electricity & electronics ♦ Technology ♦ Engineering & allied operations ♦ Applied physics
Subject Keyword Torque control ♦ Gain ♦ Velocity control ♦ Fuzzy control ♦ Induction machines ♦ Induction motor drives ♦ Induction generators ♦ Pulse width modulation inverters ♦ Electric variables control ♦ Voltage control
Abstract This paper presents an original variable gain PI (VGPI) controller for speed control of a direct torque neuro fuzzy controlled (DTNFC) induction motor drive. First, a VGPI speed controller is designed to replace the classical PI controller in a conventional direct torque controlled induction motor drive. Its simulated performances are then compared to those of a classical PI controller. Then, a direct torque neuro fuzzy control (DTNFC) for a voltage source PWM inverter fed induction motor drive is presented. This control scheme uses the stator flux amplitude and the electromagnetic torque errors through an adaptive NF inference system (ANFIS) to generate a voltage space vector (reference voltage) which is used by a space vector modulator to generate the inverter switching states. In this paper a new ANFIS structure is proposed. This structure generates the desired reference voltage by acting on both the amplitude and the angle of its components. Simulation of the DTNFC induction motor drive using VGPI for speed control shows promising results. The motor reaches the reference speed rapidly and without overshoot, load disturbances are rapidly rejected and variations of some of the motor parameters are fairly well dealt with.
Description Author affiliation: Univ. Centre of Saida, Algeria (Miloudi, A.)
ISBN 0780383990
ISSN 02759306
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Research ♦ Reading
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2004-06-20
Publisher Place Germany
Rights Holder Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Size (in Bytes) 386.27 kB
Page Count 6
Starting Page 3493
Ending Page 3498

Source: IEEE Xplore Digital Library