Access Restriction

Author Valiant, Leslie G.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2000
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword PAC learning ♦ Cognitive computation ♦ Computational learning ♦ Learning relations ♦ Nonmonotonic reasoning ♦ Robust reasoning
Abstract An architecture is described for designing systems that acquire and ma nipulate large amounts of unsystematized, or so-called commonsense, knowledge. Its aim is to exploit to the full those aspects of computational learning that are known to offer powerful solutions in the acquisition and maintenance of robust knowledge bases. The architecture makes explicit the requirements on the basic computational tasks that are to be performed and is designed to make this computationally tractable even for very large databases. The main claims are that (i) the basic learning and deduction tasks are provably tractable and (ii) tractable learning offers viable approaches to a range of issues that have been previously identified as problematic for artificial intelligence systems that are programmed. Among the issues that learning offers to resolve are robustness to inconsistencies, robustness to incomplete information and resolving among alternatives. Attribute-efficient learning algorithms, which allow learning from few examples in large dimensional systems, are fundamental to the approach. Underpinning the overall architecture is a new principled approach to manipulating relations in learning systems. This approach, of independently quantified arguments, allows propositional learning algorithms to be applied systematically to learning relational concepts in polynomial time and in modular fashion.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2000-09-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 47
Issue Number 5
Page Count 29
Starting Page 854
Ending Page 882

Open content in new tab

   Open content in new tab
Source: ACM Digital Library