Thumbnail
Access Restriction
Subscribed

Author Bulatov, Andrei A.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2006
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Constraint satisfaction problem ♦ Complexity ♦ Dichotomy theorem ♦ Homomorphism problem
Abstract The Constraint Satisfaction Problem (CSP) provides a common framework for many combinatorial problems. The general CSP is known to be NP-complete; however, certain restrictions on a possible form of constraints may affect the complexity and lead to tractable problem classes. There is, therefore, a fundamental research direction, aiming to separate those subclasses of the CSP that are tractable and those which remain NP-complete.Schaefer gave an exhaustive solution of this problem for the CSP on a 2-element domain. In this article, we generalise this result to a classification of the complexity of the CSP on a 3-element domain. The main result states that every subproblem of the CSP is either tractable or NP-complete, and the criterion separating them is that conjectured in Bulatov et al. [2005] and Bulatov and Jeavons [2001b]. We also characterize those subproblems for which standard constraint propagation techniques provide a decision procedure. Finally, we exhibit a polynomial time algorithm which, for a given set of allowed constraints, outputs if this set gives rise to a tractable problem class. To obtain the main result and the algorithm, we extensively use the algebraic technique for the CSP developed in Jeavons [1998b], Bulatov et al.[2005], and Bulatov and Jeavons [2001b].
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2006-01-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 53
Issue Number 1
Page Count 55
Starting Page 66
Ending Page 120


Open content in new tab

   Open content in new tab
Source: ACM Digital Library