Thumbnail
Access Restriction
Subscribed

Author Cugola, Gianpaolo ♦ Margara, Alessandro
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2012
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Complex event processing ♦ Publish-subscribe ♦ Stream processing
Abstract A large number of distributed applications requires continuous and timely processing of information as it flows from the periphery to the center of the system. Examples include intrusion detection systems which analyze network traffic in real-time to identify possible attacks; environmental monitoring applications which process raw data coming from sensor networks to identify critical situations; or applications performing online analysis of stock prices to identify trends and forecast future values. Traditional DBMSs, which need to store and index data before processing it, can hardly fulfill the requirements of timeliness coming from such domains. Accordingly, during the last decade, different research communities developed a number of tools, which we collectively call Information flow processing (IFP) systems, to support these scenarios. They differ in their system architecture, data model, rule model, and rule language. In this article, we survey these systems to help researchers, who often come from different backgrounds, in understanding how the various approaches they adopt may complement each other. In particular, we propose a general, unifying model to capture the different aspects of an IFP system and use it to provide a complete and precise classification of the systems and mechanisms proposed so far.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2012-06-01
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 44
Issue Number 3
Page Count 62
Starting Page 1
Ending Page 62


Open content in new tab

   Open content in new tab
Source: ACM Digital Library