Thumbnail
Access Restriction
Open

Author Wu, Qiong ♦ Li, Lei ♦ Zhang, Yi-Du
Editor Boscato, Giosuè
Source Hindawi
Content type Text
Publisher Hindawi
File Format PDF
Copyright Year ©2017
Language English
Abstract Thin-walled parts primarily comprise the entire piece of rough machining, and the material removal rate can surpass 95%. Numerous components with thin-walled structures are preferred in the aerospace industry for their light weight, high strength, and other advantages. In aerospace thin-walled workpiece machining processes and practical applications, they are excited by the vibration. The preload changing the modal stiffness of the part is found and this change causes continuous changes in the natural frequency. Researching on the influence of pretightening force on dynamic characteristics of thin-walled components is highly significant for controlling vibration. In this study, the typical aviation thin-walled part is the research object. Finite element numerical simulation and experimental verification are employed to analyze the dynamic characteristics of 7075 aluminum alloy thin-walled plates under different preloads for exploring the relationship between natural frequency and preload. The relationship is validated by comparative results. Both the simulation and experimental results show that the natural frequencies of plates increase following the augmentation of the preload. Thus, this research introduces the method where vibration of aerospace thin-walled parts is reduced by preload. For practical engineering application, a program showing the relationship between natural frequency and preload is written using Visual Basic language.
ISSN 10709622
Learning Resource Type Article
Publisher Date 2017-12-17
Rights License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
e-ISSN 18759203
Journal Shock and Vibration
Volume Number 2017
Page Count 7


Open content in new tab

   Open content in new tab