Thumbnail
Access Restriction
Open

Author Sun, Qian ♦ Xin, Fan ♦ Wen, Xinan ♦ Lu, Chan ♦ Chen, Ronghe ♦ Ruan, Guohong
Editor Tundis, Rosa
Source Hindawi
Content type Text
Publisher Hindawi
File Format PDF
Copyright Year ©2018
Language English
Abstract Oxidative stress and inflammation play an important role in hypertensive animals and patients. Hydrogen plays a role of antioxidation and anti-inflammation. Calcium and magnesium play an important role in reducing hypertension and antioxidant. Filtered water contains abundant hydrogen and a large number of other essential elements of the human body. We investigated the protective effects of filtered water on hypertensive mice. To establish hypertension model, ICR mice were administered with N′-nitro-L-arginine methyl ester (L-NAME) hydrochloride 64 mg/kg per day for 1 month. The hypertensive mice were, respectively, administered with pure water, tap water, and filtered water for 2 months. Lipid peroxidation, antioxidant enzymatic activity, endothelin-1 (ET-1), angiotensin II (Ang II), and proinflammatory cytokines (TNF-α, IL-6, and IL-1β) were assessed. Expressions of phosphorylated NF-κB P65 in the kidney were analyzed by western blot. qRT-PCR analysis was adopted to determine the expression levels of the proinflammatory cytokines and NF-κB P65. The results demonstrated that filtered water can reduce the blood pressure. Filtered water treatment restored the activity of antioxidant enzymes, downregulated ET-1, and Ang II in the serum of mice. Filtered water treatment suppressed proinflammatory cytokines and decreased the mRNA expression of TNF-α, IL-6, IL-1β, and NF-κB P65. Consumption of filtered water inhibited the expression of NF-κB P65. This suggests that filtered water can reduce the blood pressure. The protection mechanisms include downregulating oxidative stress and inhibiting inflammation, which is partly due to the inhibition of the NF-κB signaling pathway.
ISSN 19420900
Learning Resource Type Article
Publisher Date 2018-12-02
Rights License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
e-ISSN 19420994
Journal Oxidative Medicine and Cellular Longevity
Volume Number 2018
Page Count 8


Open content in new tab

   Open content in new tab