Thumbnail
Access Restriction
Open

Author Sadek, Mohammed ♦ Li, Xuxiang
Editor Shahria Alam, M.
Source Hindawi
Content type Text
Publisher Hindawi
File Format PDF
Copyright Year ©2019
Language English
Abstract Natural hazards are indeed counted as the most critical challenges facing our world, represented in floods, earthquakes, volcanoes, hurricanes, and forest fires. Among these natural hazards, the flash flood is regarded the most frequent. In this work, we utilized two Sentinel-2 satellite images, before and after the flash flood, SRTM and photos captured by using a helicopter. This paper aims at three prime objectives. Firstly, the flood influence is determined on the city of Ras Ghareb, Egypt, based on analyzing free satellite data (Sentinel-2 images). Secondly, fuzzy the analytical hierarchy process (FAHP) method and a geographical information system (GIS) are integrated for flood risk analysis and evaluation in the flood-prone area. Finally, such a flood vulnerability map is used as an index to assist the decision-makers prepare for probable flooding. FAHP is preferable as it can cater to the uncertainties in data and analysis. As a result, FAHP is appropriate to determine the flood-vulnerable area in cities especially due to the matching with the most destroyed areas identified by the change detection between the two Sentinel-2 images. Then, the decision-maker can depend on Sentinel-2 images to estimate the flood influence through a regional scale or applying the FAHP on cities susceptible to flash floods in case of unavailable satellite images to contribute in establishing an early warning system enough to the evacuation of the risky areas.
ISSN 16878086
Learning Resource Type Article
Publisher Date 2019-05-02
Rights License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
e-ISSN 16878094
Journal Advances in Civil Engineering
Volume Number 2019
Page Count 15


Open content in new tab

   Open content in new tab