Thumbnail
Access Restriction
Open

Author Gui, Jinsong ♦ Hui, Lihuan ♦ Xiong, Naixue
Editor Esparza, Oscar
Source Hindawi
Content type Text
Publisher Hindawi
File Format PDF
Copyright Year ©2018
Language English
Abstract The ultradensification deploying for cellular networks is a direct and effective method for the improvement of network capacity. However, the benefit is achieved at the cost of network infrastructure investment and operating overheads, especially when there is big gap between peak-hour Internet traffic and average one. Therefore, we put forward the concept of virtual cellular coverage area, where wireless terminals with high-end configuration are motivated to enhance cellular coverage quality by both providing RF energy compensation and rewarding free traffic access to Internet. This problem is formulated as the Stackelberg game based on three-party circular decision, where a Macro BS (MBS) acts as the leader to offer a charging power to Energy Transferring Relays (ETRs), and the ETRs and their associating Virtual Access Points (VAPs) act as the followers to make their decisions, respectively. According to the feedback from the followers, the leader may readjust its strategy. The circular decision is repeated until the powers converge. Also, the better response algorithm for each game player is proposed to iteratively achieve the Stackelberg-Nash Equilibrium (SNE). Theoretical analysis proves the convergence of the proposed game scheme, and simulation results demonstrate its effectiveness.
ISSN 15308669
Learning Resource Type Article
Publisher Date 2018-04-29
Rights License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
e-ISSN 15308677
Journal Wireless Communications and Mobile Computing
Volume Number 2018
Page Count 19


Open content in new tab

   Open content in new tab