Thumbnail
Access Restriction
Open

Author He, Xinhua ♦ Hu, Wenfa
Editor Gaggero, Mauro
Source Hindawi
Content type Text
Publisher Hindawi
File Format PDF
Copyright Year ©2017
Language English
Abstract Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total cost of construction and operation and overall sojourn time of stormwater. An improved genetic algorithm is redesigned to solve this complex nondeterministic problem, which incorporates with stochastic and fuzzy characteristics in whole drainage process. A numerical example in Shanghai illustrates how to implement the model, and comparisons with alternative algorithms show its performance in computational flexibility and efficiency. Discussions on sensitivity of four main parameters, that is, quantity of pump stations, drainage pipe diameter, rainstorm precipitation intensity, and confidence levels, are also presented to provide guidance for designing urban drainage system.
ISSN 1024123X
Learning Resource Type Article
Publisher Date 2017-03-19
Rights License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
e-ISSN 15635147
Journal Mathematical Problems in Engineering
Volume Number 2017
Page Count 18


Open content in new tab

   Open content in new tab