Thumbnail
Access Restriction
Open

Author Zhu, Dan ♦ Ma, Yong ♦ Ding, Sujuan ♦ Jiang, Hongmei ♦ Fang, Jun
Editor Zhai, Lidong
Source Hindawi
Content type Text
Publisher Hindawi
File Format PDF
Copyright Year ©2018
Language English
Abstract This study investigated the antioxidant capacity and intestinal bacteria community in a mouse model of DSS-induced colitis. Twenty mice were randomly assigned to two treatments: mice with colitis induced by 5% DSS (DSS group) and mice with colitis induced by 5% DSS that also received melatonin treatment (MEL group). The DSS group showed significantly less antioxidant capability than the MEL group, but the two groups did not differ significantly in terms of diversity index (Shannon and Simpson), bacterial culture abundance (Chao1 and ACE), and coverage (Good’s coverage estimator). Bacteroidetes were the most abundant phylum in the DSS group (58.93%), followed by Firmicutes with 31.46% and Proteobacteria with 7.97%. In contrast, Firmicutes were the most abundant in the MEL group (49.48%), followed by Bacteroidetes with 41.63% and Proteobacteria with 7.50%. The results support the use of melatonin for prevention of intestinal bowel disease due to its modulatory effect on antioxidant capability and microbiota in mice with colitis. Melatonin was demonstrated to improve the oxidative stress resistance of mice with colitis and regulate the intestinal microbial flora, thus improving intestinal health.
ISSN 23146133
Learning Resource Type Article
Publisher Date 2018-02-06
Rights License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
e-ISSN 23146141
Journal BioMed Research International
Volume Number 2018
Page Count 6


Open content in new tab

   Open content in new tab