Thumbnail
Access Restriction
Open

Author Markovich, A. ♦ Yang, C.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword RADIATION PROTECTION AND DOSIMETRY ♦ APPLIED LIFE SCIENCES ♦ ACCURACY ♦ BALL BEARINGS ♦ COLLIMATORS ♦ COMPUTER CODES ♦ COMPUTERIZED TOMOGRAPHY ♦ IMAGES ♦ ISO ♦ ITERATIVE METHODS ♦ LASERS ♦ LINEAR ACCELERATORS ♦ PERIODICITY ♦ PHANTOMS ♦ QUALITY ASSURANCE ♦ TOLERANCE
Abstract Purpose: To compare two different quality assurance tools for kV-MV isocenter coincidence check. Methods: Ball-Bearing device (BBD) (Elekta) provided along with a CBCT equipped LINAC and isocenter cube phantom (CP) (a commercial product of Modus Medical Devices) are utilized to check the coincidence between the MV and kV beam isocenters. The microstepping meter of the BBD allows precision adjustment to better than 0.01mm in three directions. The BBD is aligned to the MV-isocenter with the lasers and followed by taking MV-images of at two collimator angles at each cardinal gantry, then its position adjusted. This process takes in iterative steps until 0.25mm tolerance is achieved. Four planar kV-images are taken at cardinal angles and deviations of BBD position from kVisocenter are evaluated. CP is positioned on the couch with the lasers at known offset from the isocenter. CBCT is utilized to set the cube to its kV isocenter with the precision of linac’s couch (1mm). MV-images are taken at various gantry, collimator, and couch angles and evaluated with the CP manufacturer provided QA software to determine coincidence of the 6mm steel ball at cube center with MV-isocenter. Three sets of measurements, one after another, were performed on the same day for each phantom on the same linac. Results: Assuming little variation between kV and MV isocenters in a short time, BBD measurements are more reproducible than CP. With comparable conditions both methods agree within 0.5 mm in each direction, while for BBD average standard deviation was 0.07mm and for iso-cube 0.3mm. Conclusion: Since BBD is more reliable and its results are more reproducible, it should be used during the monthly QA. Since CP is a more efficient device, it should be used for daily QA. A comparison study between the two devices should be periodically performed.
ISSN 00942405
Educational Use Research
Learning Resource Type Article
Publisher Date 2016-06-15
Publisher Place United States
Journal Medical Physics
Volume Number 43
Issue Number 6


Open content in new tab

   Open content in new tab