Thumbnail
Access Restriction
Open

Author Peppa, V. ♦ Pappas, E. ♦ Pantelis, E. ♦ Papagiannis, P. ♦ Major, T. ♦ Polgar, C.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword RADIOLOGY AND NUCLEAR MEDICINE ♦ RADIATION PROTECTION AND DOSIMETRY ♦ BRACHYTHERAPY ♦ CARCINOMAS ♦ COMPUTER CODES ♦ DOSIMETRY ♦ HEAD ♦ IRIDIUM 192 ♦ IRRADIATION ♦ MAMMARY GLANDS ♦ MONTE CARLO METHOD ♦ NECK ♦ PATIENTS ♦ RADIATION DOSES ♦ RADIATION SOURCE IMPLANTS ♦ SIMULATION ♦ SURVIVAL CURVES
Abstract Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research co-financed by the ESF and Greek funds through the Operational Program Education and Lifelong Learning Investing in Knowledge Society of the NSRF. Research Funding Program Aristeia. Nucletron, an Elekta company (Veenendaal, The Netherlands) is gratefully acknowledged for providing Oncentra Brachy v4.4 for research purposes.
ISSN 00942405
Educational Use Research
Learning Resource Type Article
Publisher Date 2015-06-15
Publisher Place United States
Journal Medical Physics
Volume Number 42
Issue Number 6


Open content in new tab

   Open content in new tab