Access Restriction

Author Colombo, Christian ♦ Pace, Gordon J.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2013
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Compensations
Abstract As computer systems continue to grow in complexity, the possibility of failure increases. At the same time, the increase in computer system pervasiveness in day-to-day activities bring along increased expectations on their reliability. This has led to the need for effective and automatic error-recovery techniques to resolve failures. Transactions enable the handling of failure propagation over concurrent systems due to dependencies, restoring the system to the point before the failure occurred. However, in various settings, especially when interacting with the real world, reversal is not possible. The notion of compensations has been long advocated as a way of addressing this issue, through the specification of activities which can be executed to undo partial transactions. Still, there is no accepted standard theory; the literature offers a plethora of distinct formalisms and approaches. In this survey, we review the compensations from a theoretical point of view by (i) giving a historic account of the evolution of compensating transactions; (ii) delineating and describing a number of design options involved; (iii) presenting a number of formalisms found in the literature, exposing similarities and differences; (iv) comparing formal notions of compensation correctness; (v) giving insights regarding the application of compensations in practice; and (vi) discussing current and future research trends in the area.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-07-03
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 45
Issue Number 3
Page Count 35
Starting Page 1
Ending Page 35

Open content in new tab

   Open content in new tab
Source: ACM Digital Library