Thumbnail
Access Restriction
Open

Author Salih, Cellek Mehmet ♦ Bahadır, Olcay Ali ♦ Abdulkerim, Okbaz ♦ Ali, Pınarbaşı
Source Directory of Open Access Journals (DOAJ)
Content type Text
Publisher EDP Sciences
File Format PDF
Date Created 2017-05-16
Copyright Year ©2017
Language English
Subject Domain (in LCC) QC1-999
Subject Keyword Science ♦ Physics
Abstract In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.
ISSN 2100014X
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG ♦ Career/Technical Study
Learning Resource Type Article
Publisher Date 2017-01-01
e-ISSN 2100014X
Journal EPJ Web of Conferences
Volume Number 143
Starting Page 02084


Source: Directory of Open Access Journals (DOAJ)