Thumbnail
Access Restriction
Subscribed

Author Rieffel, Eleanor ♦ Polak, Wolfgang
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2000
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Complexity ♦ Parallelism ♦ Quantum computing
Abstract Richard Feynman's observation that certain quantum mechanical effects cannot be simulated efficiently on a computer led to speculation that computation in general could be done more efficiently if it used these quantum effects. This speculation proved justified when Peter Shor described a polynomial time quantum algorithm for factoring intergers.In quantum systems, the computational space increases exponentially with the size of the system, which enables exponential parallelism. This parallelism could lead to exponentially faster quantum algorithms than possible classically. The catch is that accessing the results, which requires measurement, proves tricky and requires new nontraditional programming techniques.The aim of this paper is to guide computer scientists through the barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe quantum cryptography, teleportation, and dense coding. Various approaches to exploiting the power of quantum parallelism are explained. We conclude with a discussion of quantum error correction.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2000-09-01
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 32
Issue Number 3
Page Count 36
Starting Page 300
Ending Page 335


Open content in new tab

   Open content in new tab
Source: ACM Digital Library