Thumbnail
Access Restriction
Subscribed

Author Langguth, Johannes ♦ Manne, Fredrik ♦ Sanders, Peter
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2011
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Computer programming, programs & data
Subject Keyword Heuristics ♦ Matching
Abstract It is a well-established result that improved pivoting in linear solvers can be achieved by computing a bipartite matching between matrix entries and positions on the main diagonal. With the availability of increasingly faster linear solvers, the speed of bipartite matching computations must keep up to avoid slowing down the main computation. Fast algorithms for bipartite matching, which are usually initialized with simple heuristics, have been known for a long time. However, the performance of these algorithms is largely dependent on the quality of the heuristic. We compare combinations of several known heuristics and exact algorithms to find fast combined methods, using real-world matrices as well as randomly generated instances. In addition, we present a new heuristic aimed at obtaining high-quality matchings and compare its impact on bipartite matching algorithms with that of other heuristics. The experiments suggest that its performance compares favorably to the best-known heuristics, and that it is especially suited for application in linear solvers.
ISSN 10846654
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2010-03-01
Publisher Place New York
e-ISSN 10846654
Journal Journal of Experimental Algorithmics (JEA)
Volume Number 15
Page Count 22
Starting Page 1.1
Ending Page 1.22


Open content in new tab

   Open content in new tab
Source: ACM Digital Library