Thumbnail
Access Restriction
Open

Author Rampino, Sergio ♦ Belpassi, Leonardo ♦ Storchi, Loriano
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ♦ MATHEMATICAL METHODS AND COMPUTING ♦ ADSORPTION ♦ COMPARATIVE EVALUATIONS ♦ DENSITY ♦ ELECTRONS ♦ EXPERIMENTAL DATA ♦ GOLD ♦ INTERACTIONS ♦ PERIODIC SYSTEM ♦ RARE GASES ♦ SURFACES ♦ TRANSACTINIDE ELEMENTS ♦ VOLATILITY
Abstract The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au–E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au{sub 7}– and Au{sub 20}–E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au{sub 7} (planar) and Au{sub 20} (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au{sub 20}-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.
ISSN 00219606
Educational Use Research
Learning Resource Type Article
Publisher Date 2015-07-14
Publisher Place United States
Journal Journal of Chemical Physics
Volume Number 143
Issue Number 2


Open content in new tab

   Open content in new tab