Thumbnail
Access Restriction
Open

Author Fernández, Roemi ♦ Montes, Héctor ♦ Salinas, Carlota
Source World Health Organization (WHO)-Global Index Medicus
Content type Text
Publisher Multidisciplinary Digital Publishing Institute
File Format HTM / HTML
Language English
Difficulty Level Medium
Subject Domain (in DDC) Technology ♦ Medicine & health
Abstract Ground bearing capacity has become a relevant concept for site-specific management that aims to protect soil from the compaction and the rutting produced by the indiscriminate use of agricultural and forestry machines. Nevertheless, commonly known techniques for its estimation are cumbersome and time-consuming. In order to alleviate these difficulties, this paper introduces an innovative sensory system based on Visible-Near InfraRed (VIS-NIR), Short-Wave InfraRed (SWIR) and Long-Wave InfraRed (LWIR) imagery and a sequential algorithm that combines a registration procedure, a multi-class SVM classifier, a K-means clustering and a linear regression for estimating the ground bearing capacity. To evaluate the feasibility and capabilities of the presented approach, several experimental tests were carried out in a sandy-loam terrain. The proposed solution offers notable benefits such as its non-invasiveness to the soil, its spatial coverage without the need for exhaustive manual measurements and its real time operation. Therefore, it can be very useful in decision making processes that tend to reduce ground damage during agricultural and forestry operations.
Description Country affiliation: Spain
Author Affiliation: Fernández R ( Centre for Automation and Robotics (CAR) CSIC-UPM, Ctra. Campo Real, Km. 0.2, La Poveda, Arganda del Rey, Madrid 28500, Spain. roemi.fernandez@car.upm-csic.es.); Montes H ( Centre for Automation and Robotics (CAR) CSIC-UPM, Ctra. Campo Real, Km. 0.2, La Poveda, Arganda del Rey, Madrid 28500, Spain. hector.montes@car.upm-csic.es.); Salinas C ( Faculty of Electrical Engineering, Technological University of Panama, Panama City 0819, Panama. hector.montes@car.upm-csic.es.)
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Reading ♦ Research ♦ Self Learning
Interactivity Type Expositive
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-06-15
Publisher Place Switzerland
e-ISSN 14248220
Journal Sensors
Volume Number 15
Issue Number 6


Source: WHO-Global Index Medicus