Thumbnail
Access Restriction
Open

Author Li, Ning ♦ Martínez, José-Fernán ♦ Hernández Díaz, Vicente
Source World Health Organization (WHO)-Global Index Medicus
Content type Text
Publisher Multidisciplinary Digital Publishing Institute
File Format HTM / HTML
Language English
Difficulty Level Medium
Subject Domain (in DDC) Technology ♦ Medicine & health
Abstract Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.
Description Country affiliation: Spain
Author Affiliation: Li N ( Centro de Investigación en Tecnologías Software y Sistemal Multimedia para la Sostenibilidad (CITSEM), Campus Sur Universidad Ploitécnica de Madrid (UPM), Madrid 28031, Spain. li.ning@upm.es.); Martínez JF ( Centro de Investigación en Tecnologías Software y Sistemal Multimedia para la Sostenibilidad (CITSEM), Campus Sur Universidad Ploitécnica de Madrid (UPM), Madrid 28031, Spain. jfmartin@diatel.upm.es.); Hernández Díaz V ( Centro de Investigación en Tecnologías Software y Sistemal Multimedia para la Sostenibilidad (CITSEM), Campus Sur Universidad Ploitécnica de Madrid (UPM), Madrid 28031, Spain. vhernandez@diatel.upm.es.)
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Reading ♦ Research ♦ Self Learning
Interactivity Type Expositive
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-08-10
Publisher Place Switzerland
e-ISSN 14248220
Journal Sensors
Volume Number 15
Issue Number 8


Source: WHO-Global Index Medicus