Access Restriction

Author Machado, Nuno ♦ Lucia, Brandon ♦ Rodrigues, Luís
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Computer programming, programs & data
Subject Keyword Concurrency ♦ Differential schedule projection ♦ Constraint solving ♦ Debugging ♦ Symbolic execution
Abstract We present Symbiosis: a concurrency debugging technique based on novel differential schedule projections (DSPs). A DSP shows the small set of memory operations and data-flows responsible for a failure, as well as a reordering of those elements that avoids the failure. To build a DSP, Symbiosis first generates a full, failing, multithreaded schedule via thread path profiling and symbolic constraint solving. Symbiosis selectively reorders events in the failing schedule to produce a non-failing, alternate schedule. A DSP reports the ordering and data-flow differences between the failing and non-failing schedules. Our evaluation on buggy real-world software and benchmarks shows that, in practical time, Symbiosis generates DSPs that both isolate the small fraction of event orders and data-flows responsible for the failure, and show which event reorderings prevent failing. In our experiments, DSPs contain 81% fewer events and 96% less data-flows than the full failure-inducing schedules. Moreover, by allowing developers to focus on only a few events, DSPs reduce the amount of time required to find a valid fix.
Description Affiliation: Carnegie Mellon University, USA (Lucia, Brandon) || Universidade de Lisboa, Portugal (Machado, Nuno; Rodrigues, Luís)
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1983-05-01
Publisher Place New York
Journal ACM SIGPLAN Notices (SIGP)
Volume Number 50
Issue Number 6
Page Count 10
Starting Page 586
Ending Page 595

Open content in new tab

   Open content in new tab
Source: ACM Digital Library