Thumbnail
Access Restriction
Subscribed

Author Delimitrou, Christina ♦ Kozyrakis, Christos
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Computer programming, programs & data
Subject Keyword Cloud computing ♦ Heterogeneity ♦ Qos ♦ Interference ♦ Datacenter ♦ Scheduling
Abstract Large-scale datacenters (DCs) host tens of thousands of diverse applications each day. However, interference between colocated workloads and the difficulty to match applications to one of the many hardware platforms available can degrade performance, violating the quality of service (QoS) guarantees that many cloud workloads require. While previous work has identified the impact of heterogeneity and interference, existing solutions are computationally intensive, cannot be applied online and do not scale beyond few applications. We present Paragon, an online and scalable DC scheduler that is heterogeneity and interference-aware. Paragon is derived from robust analytical methods and instead of profiling each application in detail, it leverages information the system already has about applications it has previously seen. It uses collaborative filtering techniques to quickly and accurately classify an unknown, incoming workload with respect to heterogeneity and interference in multiple shared resources, by identifying similarities to previously scheduled applications. The classification allows Paragon to greedily schedule applications in a manner that minimizes interference and maximizes server utilization. Paragon scales to tens of thousands of servers with marginal scheduling overheads in terms of time or state. We evaluate Paragon with a wide range of workload scenarios, on both small and large-scale systems, including 1,000 servers on EC2. For a 2,500-workload scenario, Paragon enforces performance guarantees for 91% of applications, while significantly improving utilization. In comparison, heterogeneity-oblivious, interference-oblivious and least-loaded schedulers only provide similar guarantees for 14%, 11% and 3% of workloads. The differences are more striking in oversubscribed scenarios where resource efficiency is more critical.
Description Affiliation: Stanford University, Stanford, CA, USA (Delimitrou, Christina; Kozyrakis, Christos)
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1983-05-01
Publisher Place New York
Journal ACM SIGPLAN Notices (SIGP)
Volume Number 48
Issue Number 4
Page Count 12
Starting Page 77
Ending Page 88


Open content in new tab

   Open content in new tab
Source: ACM Digital Library