Thumbnail
Access Restriction
Subscribed

Author McCune, Robert Ryan ♦ Weninger, Tim ♦ Madey, Greg
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2015
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Big Data ♦ Graph processing ♦ Distributed algorithms ♦ Distributed systems ♦ Pregel
Abstract The vertex-centric programming model is an established computational paradigm recently incorporated into distributed processing frameworks to address challenges in large-scale graph processing. Billion-node graphs that exceed the memory capacity of commodity machines are not well supported by popular Big Data tools like MapReduce, which are notoriously poor performing for iterative graph algorithms such as PageRank. In response, a new type of framework challenges one to “think like a vertex” (TLAV) and implements user-defined programs from the perspective of a vertex rather than a graph. Such an approach improves locality, demonstrates linear scalability, and provides a natural way to express and compute many iterative graph algorithms. These frameworks are simple to program and widely applicable but, like an operating system, are composed of several intricate, interdependent components, of which a thorough understanding is necessary in order to elicit top performance at scale. To this end, the first comprehensive survey of TLAV frameworks is presented. In this survey, the vertex-centric approach to graph processing is overviewed, TLAV frameworks are deconstructed into four main components and respectively analyzed, and TLAV implementations are reviewed and categorized.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-10-12
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 48
Issue Number 2
Page Count 39
Starting Page 1
Ending Page 39


Open content in new tab

   Open content in new tab
Source: ACM Digital Library