Thumbnail
Access Restriction
Open

Author Borowski, S. K.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ♦ MOON ♦ SPACE TRANSPORT ♦ SPACE VEHICLES ♦ LAUNCHING ♦ PROPELLANTS ♦ PROPULSION SYSTEMS ♦ OXYGEN ♦ HYDROGEN
Abstract The feasibility of conducting human missions to the Moon is examined assuming the use of three {open_quote}{open_quote}high leverage{close_quote}{close_quote} technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) {open_quote}{open_quote}{ital in}-{ital situ}{close_quote}{close_quote} {ital resource} {ital utilization} (ISRU){emdash}specifically {open_quote}{open_quote}lunar-derived{close_quote}{close_quote} liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the {open_quote}{open_quote}compact{close_quote}{close_quote} dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of {approximately}60 t (3 SSTO launches). Using {approximately}8 t of LUNOX to {open_quote}{open_quote}reoxidize{close_quote}{close_quote} the LERV for a {open_quote}{open_quote}direct return{close_quote}{close_quote} flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine{close_quote}s ability to operate at any oxygen/hydrogen mixture ratio from 0 to 7 with high specific impulse ({approximately}940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV{close_quote}s {open_quote}{open_quote}propulsion{close_quote}{close_quote} and {open_quote}{open_quote}propellant modules{close_quote}{close_quote}. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. {copyright} {ital 1996 American Institute of Physics.}
ISSN 0094243X
Educational Use Research
Learning Resource Type Article
Publisher Date 1996-03-01
Publisher Place United States
Volume Number 361
Issue Number 1
Technical Publication No. CONF-960109-


Open content in new tab

   Open content in new tab